Magdalena Włudecka

Cardinal Stefan Wyszyński University in Warsaw, Poland

Winter School 2019

(joint work with P. Szewczak)

X = a subset of $\mathbb R$

 $C(X) := \{f : X \to \mathbb{R} : f \text{ is continuous}\}, w.r.t pointwise conv. topology$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

X = a subset of \mathbb{R}

 $C(X) := \{f : X \to \mathbb{R} : f \text{ is continuous}\}, w.r.t pointwise conv. topology$

C(X) is first-countable $\iff X$ is countable

X = a subset of \mathbb{R}

 $C(X) := \{f : X \to \mathbb{R} : f \text{ is continuous}\}, w.r.t pointwise conv. topology$

C(X) is first-countable $\iff X$ is countable

A space *E* is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \overline{A}$, there is $\{q_n : n \in \mathbb{N}\} \subseteq A$ such that $\lim_{n\to\infty} q_n = q$.

$$q \in \overline{A} \Longrightarrow A \ni q_n \longrightarrow q$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

X = a subset of \mathbb{R}

 $C(X) := \{f : X \to \mathbb{R} : f \text{ is continuous}\}, w.r.t pointwise conv. topology$

C(X) is first-countable $\iff X$ is countable

A space *E* is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \overline{A}$, there is $\{q_n : n \in \mathbb{N}\} \subseteq A$ such that $\lim_{n\to\infty} q_n = q$.

$$q \in \overline{A} \Longrightarrow A \ni q_n \longrightarrow q$$

 $first-countable \implies Fréchet-Urysohn$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

X = a subset of \mathbb{R}

 $C(X) := \{f : X \to \mathbb{R} : f \text{ is continuous}\}, w.r.t pointwise conv. topology$

C(X) is first-countable $\iff X$ is countable

A space *E* is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \overline{A}$, there is $\{q_n : n \in \mathbb{N}\} \subseteq A$ such that $\lim_{n\to\infty} q_n = q$.

$$q \in \overline{A} \Longrightarrow A \ni q_n \longrightarrow q$$

first-countable \implies Fréchet-Urysohn

C(X) is Fréchet-Urysohn $\iff X$ is ???

• ω -cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ω -cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ -cover, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ω -cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ -cover, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 γ -set = every ω -cover has a γ -subcover

 γ -sets

- ω -cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ -cover, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

 γ -set = every ω -cover has a γ -subcover

Theorem 1 (Gerlits–Nagy)

C(X) is Fréchet-Urysohn $\iff X$ is γ

 γ -sets

- ω -cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ -cover, if for every $x \in X$, a set $\{U \in \mathcal{U} : x \notin U\}$ is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\gamma\text{-set} = \text{every } \omega\text{-cover has a } \gamma\text{-subcover}$

Theorem 1 (Gerlits–Nagy)

C(X) is Fréchet-Urysohn $\iff X$ is γ

Is there an uncountable γ -set?

The space $P(\mathbb{N})$

(ロ)、(型)、(E)、(E)、 E) の(()

 $\mathsf{P}(\mathbb{N})\simeq \{0,1\}^{\mathbb{N}}\simeq \text{ Cantor set }\subseteq \mathbb{R}$

The space $P(\mathbb{N})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{split} \mathsf{P}(\mathbb{N}) &\simeq \{0,1\}^{\mathbb{N}} \simeq \text{ Cantor set } \subseteq \mathbb{R} \\ \mathsf{P}(\mathbb{N}) &= [\mathbb{N}]^{\infty} \cup \mathrm{Fin} \end{split}$$

The space $P(\mathbb{N})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\begin{split} \mathsf{P}(\mathbb{N}) &\simeq \{0,1\}^{\mathbb{N}} \simeq \text{ Cantor set } \subseteq \mathbb{R} \\ \mathsf{P}(\mathbb{N}) &= [\mathbb{N}]^{\infty} \cup \mathrm{Fin} \\ \mathbb{N}^{\mathbb{N}} \supseteq [\mathbb{N}]^{\infty} \subseteq \mathsf{P}(\mathbb{N}) \end{split}$$

The space $\mathsf{P}(\mathbb{N})$

$$\begin{split} \mathsf{P}(\mathbb{N}) &\simeq \{0,1\}^{\mathbb{N}} \simeq \text{ Cantor set } \subseteq \mathbb{R} \\ \mathsf{P}(\mathbb{N}) &= [\mathbb{N}]^{\infty} \cup \mathrm{Fin} \\ \mathbb{N}^{\mathbb{N}} &\supseteq [\mathbb{N}]^{\infty} \subseteq \mathsf{P}(\mathbb{N}) \end{split}$$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^{\infty}$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The space $\mathsf{P}(\mathbb{N})$

$$\begin{split} \mathsf{P}(\mathbb{N}) &\simeq \{0,1\}^{\mathbb{N}} \simeq \text{ Cantor set } \subseteq \mathbb{R} \\ \mathsf{P}(\mathbb{N}) &= [\mathbb{N}]^{\infty} \cup \mathrm{Fin} \\ \mathbb{N}^{\mathbb{N}} &\supseteq [\mathbb{N}]^{\infty} \subseteq \mathsf{P}(\mathbb{N}) \end{split}$$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^{\infty}$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)

 $[\mathbb{N}]^{\infty} \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_1, ..., a_n \in A$, we have $|\bigcap_{i=1}^n a_i| = \omega$.

・ロト・四ト・モート ヨー うへの

The space $\mathsf{P}(\mathbb{N})$

$$\begin{split} \mathsf{P}(\mathbb{N}) &\simeq \{0,1\}^{\mathbb{N}} \simeq \text{ Cantor set } \subseteq \mathbb{R} \\ \mathsf{P}(\mathbb{N}) &= [\mathbb{N}]^{\infty} \cup \text{Fin} \\ \mathbb{N}^{\mathbb{N}} &\supseteq [\mathbb{N}]^{\infty} \subseteq \mathsf{P}(\mathbb{N}) \end{split}$$

b is a pseudointersection of $A \subseteq [\mathbb{N}]^{\infty}$, if $|b \setminus a| < \omega$ for $a \in A$. ($b \subseteq^* a$)

 $[\mathbb{N}]^{\infty} \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_1, ..., a_n \in A$, we have $|\bigcap_{i=1}^n a_i| = \omega$.

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

Theorem 2 (Recław)

 $X \text{ is } \gamma \iff \forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^{\infty} \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

Theorem 2 (Recław)

 $X \text{ is } \gamma \iff \forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^{\infty} \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection}$

Corollary 3

•
$$|X| < \mathfrak{p} \Longrightarrow X$$
 is γ

• There is $X \subseteq [\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p} , which is not γ

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

Theorem 2 (Recław)

 $X \text{ is } \gamma \iff \forall \varphi : X \xrightarrow{\text{cont.}} [\mathbb{N}]^{\infty} \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection}$

Corollary 3

•
$$|X| < \mathfrak{p} \Longrightarrow X$$
 is γ

• There is $X \subseteq [\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p} , which is not γ

Corollary 4

 $\omega_1 < \mathfrak{p} \implies$ there exists an uncountable γ -set

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

Theorem 2 (Recław)

 $X \text{ is } \gamma \iff \forall \varphi : X \xrightarrow{cont.} [\mathbb{N}]^{\infty} \text{ with a centered image, } \varphi[X] \text{ has a pseudointersection}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Corollary 3

•
$$|X| < \mathfrak{p} \Longrightarrow X$$
 is γ

• There is $X \subseteq [\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p} , which is not γ

Corollary 4

 $\omega_1 < \mathfrak{p} \implies$ there exists an uncountable γ -set

Is there a γ -set of cardinality $\geq \mathfrak{p}$?

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\}$ is a tower, if $x_{\beta} \subseteq^* x_{\alpha}$ for $\alpha < \beta$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\}$ is a tower, if $x_{\beta} \subseteq^* x_{\alpha}$ for $\alpha < \beta$ Let $f, g \in [\mathbb{N}]^{\infty}$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n.

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\}$ is a tower, if $x_{\beta} \subseteq^* x_{\alpha}$ for $\alpha < \beta$ Let $f, g \in [\mathbb{N}]^{\infty}$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n. $[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^{\infty}$ such that $a \leq^* b$ for all $a \in A$.

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\}$ is a tower, if $x_{\beta} \subseteq^* x_{\alpha}$ for $\alpha < \beta$ Let $f, g \in [\mathbb{N}]^{\infty}$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n. $[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^{\infty}$ such that $a \leq^* b$ for all $a \in A$.

A set *A* is **unbounded**, if it is not bounded.

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\} \text{ is a tower, if } x_{\beta} \subseteq^* x_{\alpha} \text{ for } \alpha < \beta$

Let $f,g \in [\mathbb{N}]^{\infty}$. Then $f \leq g$, if $f(n) \leq g(n)$ for almost all n.

 $[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^{\infty}$ such that $a \leq^* b$ for all $a \in A$.

A set *A* is unbounded, if it is not bounded.

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 ${\mathfrak b}$ – the minimal cardinality of an unbounded set

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \kappa\}$ is a tower, if $x_{\beta} \subseteq^* x_{\alpha}$ for $\alpha < \beta$ Let $f, g \in [\mathbb{N}]^{\infty}$. Then $f \leq^* g$, if $f(n) \leq g(n)$ for almost all n. $[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in [\mathbb{N}]^{\infty}$ such that $a \leq^* b$ for all $a \in A$.

A set *A* is unbounded, if it is not bounded.

 \mathfrak{p} – the minimal cardinality of a centered family in $[\mathbb{N}]^\infty$ with no pseudointersection

 ${\mathfrak b}$ – the minimal cardinality of an unbounded set

$$\omega < \mathfrak{p} \leqslant \mathfrak{b} \leqslant \mathfrak{c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \mathfrak{b}\}$ is an unbounded tower, if T is a tower and T is unbounded

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \mathfrak{b}\}$ is an unbounded tower, if T is a tower and T is unbounded

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

T = an unbounded tower

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \mathfrak{b}\}$ is an unbounded tower, if T is a tower and T is unbounded

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

T = an unbounded tower

Lemma 5

T exists $\iff \mathfrak{p} = \mathfrak{b}$

 $[\mathbb{N}]^{\infty} \supseteq T = \{x_{\alpha} : \alpha < \mathfrak{b}\}$ is an unbounded tower, if T is a tower and T is unbounded

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

T = an unbounded tower

Lemma 5

T exists $\iff \mathfrak{p} = \mathfrak{b}$

Theorem 6 (Tsaban)

 $T \cup Fin$ is a γ -set

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ -sets X and Y such that $X \times Y$ is not Menger space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ -sets X and Y such that X \times Y is not Menger space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem 8 (Szewczak, MW) $(T \cup Fin) \sqcup (\widetilde{T} \cup Fin)$ is γ

Theorem 7 (Miller, Tsaban, Zdomskyy)

Assuming CH, there are γ -sets X and Y such that X \times Y is not Menger space.

Theorem 8 (Szewczak, MW) $(T \cup Fin) \sqcup (\widetilde{T} \cup Fin)$ is γ

Corollary 9 (Szewczak, MW) $(T \cup Fin) \times (\tilde{T} \cup Fin)$ is γ

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

 $\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

Theorem 10 (Szewczak, MW)

Let $\kappa = \mathfrak{b}$ and $Y \subseteq P(\mathbb{N})$ be a γ -set. Then $(T \cup Fin) \sqcup Y$ is γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

Theorem 10 (Szewczak, MW)

Let $\kappa = \mathfrak{b}$ and $Y \subseteq P(\mathbb{N})$ be a γ -set. Then $(T \cup Fin) \sqcup Y$ is γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary 11 (Szewczak, MW)

Let $\kappa = \mathfrak{b}$. Then $T \cup Fin$ is productively γ .

 $\kappa := \min\{|X| : X \text{ is not productively } \gamma\}$

Theorem 10 (Szewczak, MW)

Let $\kappa = \mathfrak{b}$ and $Y \subseteq P(\mathbb{N})$ be a γ -set. Then $(T \cup Fin) \sqcup Y$ is γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary 11 (Szewczak, MW)

Let $\kappa = \mathfrak{b}$. Then $T \cup Fin$ is productively γ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

countably γ -set = every countable ω -cover has a γ -subcover

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

countably γ -set = every countable ω -cover has a γ -subcover

Theorem 12 (Szewczak, MW)

Let $\lambda < \mathfrak{b}$. Then $\bigsqcup_{\beta < \lambda} (T_{\beta} \cup \operatorname{Fin})$ is countably γ .

countably γ -set = every countable ω -cover has a γ -subcover

Theorem 12 (Szewczak, MW)

Let $\lambda < \mathfrak{b}$. Then $\bigsqcup_{\beta < \lambda} (T_{\beta} \cup \operatorname{Fin})$ is countably γ .

Corollary 13 (Szewczak, MW)

Let $\omega_1 < \mathfrak{b}$. Then $X = \bigsqcup_{\beta < \omega_1} (T_\beta \cup \operatorname{Fin})$ is countably γ , X is not γ , $|X| = \mathfrak{p}$ and X is a metrizable space.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

countably γ -set = every countable ω -cover has a γ -subcover

Theorem 12 (Szewczak, MW)

Let $\lambda < \mathfrak{b}$. Then $\bigsqcup_{\beta < \lambda} (T_{\beta} \cup \operatorname{Fin})$ is countably γ .

Corollary 13 (Szewczak, MW)

Let $\omega_1 < \mathfrak{b}$. Then $X = \bigsqcup_{\beta < \omega_1} (T_\beta \cup \operatorname{Fin})$ is countably γ , X is not γ , $|X| = \mathfrak{p}$ and X is a metrizable space.

Corollary 14 (Szewczak, MW) Let $\lambda < \mathfrak{b}$. Then $\bigcup_{\beta < \lambda} (T_{\beta} \cup \operatorname{Fin})$ is γ .