Products of γ-sets

Magdalena Włudecka

Cardinal Stefan Wyszyński University in Warsaw, Poland

Winter School 2019
(joint work with P. Szewczak)

The space of continuous functions

$X=$ a subset of \mathbb{R}
$C(X):=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$, w.r.t pointwise conv. topology

The space of continuous functions

$X=$ a subset of \mathbb{R}
$C(X):=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$, w.r.t pointwise conv. topology
$C(X)$ is first-countable $\Longleftrightarrow X$ is countable

The space of continuous functions

$X=$ a subset of \mathbb{R}
$C(X):=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$, w.r.t pointwise conv. topology
$C(X)$ is first-countable $\Longleftrightarrow X$ is countable
A space E is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \bar{A}$, there is $\left\{q_{n}: n \in \mathbb{N}\right\} \subseteq A$ such that $\lim _{n \rightarrow \infty} q_{n}=q$.

$$
q \in \bar{A} \Longrightarrow A \ni q_{n} \longrightarrow q
$$

The space of continuous functions

$X=$ a subset of \mathbb{R}
$C(X):=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$, w.r.t pointwise conv. topology
$C(X)$ is first-countable $\Longleftrightarrow X$ is countable
A space E is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \bar{A}$, there is $\left\{q_{n}: n \in \mathbb{N}\right\} \subseteq A$ such that $\lim _{n \rightarrow \infty} q_{n}=q$.

$$
q \in \bar{A} \Longrightarrow A \ni q_{n} \longrightarrow q
$$

first-countable \Longrightarrow Fréchet-Urysohn

The space of continuous functions

$X=$ a subset of \mathbb{R}
$C(X):=\{f: X \rightarrow \mathbb{R}: f$ is continuous $\}$, w.r.t pointwise conv. topology
$C(X)$ is first-countable $\Longleftrightarrow X$ is countable
A space E is a Fréchet-Urysohn space if, for every point $q \in E$ and every subset $A \subseteq E$ such that $q \in \bar{A}$, there is $\left\{q_{n}: n \in \mathbb{N}\right\} \subseteq A$ such that $\lim _{n \rightarrow \infty} q_{n}=q$.

$$
q \in \bar{A} \Longrightarrow A \ni q_{n} \longrightarrow q
$$

first-countable \Longrightarrow Fréchet-Urysohn
$C(X)$ is Fréchet-Urysohn $\Longleftrightarrow X$ is ???

γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- ω-cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,

γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- ω-cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ-cover, if for every $x \in X$, a set $\{U \in \mathcal{U}: x \notin U\}$ is finite.

γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- ω-cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ-cover, if for every $x \in X$, a set $\{U \in \mathcal{U}: x \notin U\}$ is finite.
γ-set $=$ every ω-cover has a γ-subcover

γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- ω-cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ-cover, if for every $x \in X$, a set $\{U \in \mathcal{U}: x \notin U\}$ is finite.
γ-set $=$ every ω-cover has a γ-subcover
Theorem 1 (Gerlits-Nagy)
$C(X)$ is Fréchet-Urysohn $\Longleftrightarrow X$ is γ

γ-sets

An infinite open cover \mathcal{U} of a space X such that $X \notin \mathcal{U}$ is:

- ω-cover, if for every finite $F \subseteq X$, there is $U \in \mathcal{U}$ such that $F \subseteq U$,
- γ-cover, if for every $x \in X$, a set $\{U \in \mathcal{U}: x \notin U\}$ is finite.
γ-set $=$ every ω-cover has a γ-subcover
Theorem 1 (Gerlits-Nagy)
$C(X)$ is Fréchet-Urysohn $\Longleftrightarrow X$ is γ
Is there an uncountable γ-set?

The space $P(\mathbb{N})$

$$
P(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq \text { Cantor set } \subseteq \mathbb{R}
$$

The space $\mathrm{P}(\mathbb{N})$

$$
\begin{aligned}
& \mathrm{P}(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq \text { Cantor set } \subseteq \mathbb{R} \\
& \mathrm{P}(\mathbb{N})=[\mathbb{N}]^{\infty} \cup \text { Fin }
\end{aligned}
$$

The space $\mathrm{P}(\mathbb{N})$

$$
\begin{aligned}
& \mathrm{P}(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq \text { Cantor set } \subseteq \mathbb{R} \\
& \mathrm{P}(\mathbb{N})=[\mathbb{N}]^{\infty} \cup \text { Fin } \\
& \mathbb{N}^{\mathbb{N}} \supseteq[\mathbb{N}]^{\infty} \subseteq \mathrm{P}(\mathbb{N})
\end{aligned}
$$

The space $\mathrm{P}(\mathbb{N})$

$P(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq$ Cantor set $\subseteq \mathbb{R}$
$\mathrm{P}(\mathbb{N})=[\mathbb{N}]^{\infty} \cup$ Fin
$\mathbb{N}^{\mathbb{N}} \supseteq[\mathbb{N}]^{\infty} \subseteq \mathrm{P}(\mathbb{N})$
b is a pseudointersection of $A \subseteq[\mathbb{N}]^{\infty}$, if $|b \backslash a|<\omega$ for $a \in A$. ($b \subseteq^{*} a$)

The space $\mathrm{P}(\mathbb{N})$

$P(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq$ Cantor set $\subseteq \mathbb{R}$
$P(\mathbb{N})=[\mathbb{N}]^{\infty} \cup$ Fin
$\mathbb{N}^{\mathbb{N}} \supseteq[\mathbb{N}]^{\infty} \subseteq \mathrm{P}(\mathbb{N})$
b is a pseudointersection of $A \subseteq[\mathbb{N}]^{\infty}$, if $|b \backslash a|<\omega$ for $a \in A$. ($b \subseteq^{*} a$)
$[\mathbb{N}]^{\infty} \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in A$, we have $\left|\bigcap_{i=1}^{n} a_{i}\right|=\omega$.

The space $\mathrm{P}(\mathbb{N})$

$P(\mathbb{N}) \simeq\{0,1\}^{\mathbb{N}} \simeq$ Cantor set $\subseteq \mathbb{R}$
$P(\mathbb{N})=[\mathbb{N}]^{\infty} \cup$ Fin
$\mathbb{N}^{\mathbb{N}} \supseteq[\mathbb{N}]^{\infty} \subseteq \mathrm{P}(\mathbb{N})$
b is a pseudointersection of $A \subseteq[\mathbb{N}]^{\infty}$, if $|b \backslash a|<\omega$ for $a \in A$.
($b \subseteq^{*} a$)
$[\mathbb{N}]^{\infty} \supseteq A$ is centered, if for every $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in A$, we have $\left|\bigcap_{i=1}^{n} a_{i}\right|=\omega$.
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection

γ-sets

\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection

Theorem 2 (Recław)

X is $\gamma \Longleftrightarrow \forall \varphi: X \xrightarrow{\text { cont. }}[\mathbb{N}]^{\infty}$ with a centered image, $\varphi[X]$ has a pseudointersection
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection

Theorem 2 (Recław)

X is $\gamma \Longleftrightarrow \forall \varphi: X \xrightarrow{\text { cont. }}[\mathbb{N}]^{\infty}$ with a centered image, $\varphi[X]$ has a pseudointersection

Corollary 3

- $|X|<\mathfrak{p} \Longrightarrow X$ is γ
- There is $X \subseteq[\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p}, which is not γ
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection

Theorem 2 (Recław)

X is $\gamma \Longleftrightarrow \forall \varphi: X \xrightarrow{\text { cont. }}[\mathbb{N}]^{\infty}$ with a centered image, $\varphi[X]$ has a pseudointersection

Corollary 3

- $|X|<\mathfrak{p} \Longrightarrow X$ is γ
- There is $X \subseteq[\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p}, which is not γ

Corollary 4

$\omega_{1}<\mathfrak{p} \Longrightarrow$ there exists an uncountable γ-set
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection

Theorem 2 (Recław)

X is $\gamma \Longleftrightarrow \forall \varphi: X \xrightarrow{\text { cont. }}[\mathbb{N}]^{\infty}$ with a centered image, $\varphi[X]$ has a pseudointersection

Corollary 3

- $|X|<\mathfrak{p} \Longrightarrow X$ is γ
- There is $X \subseteq[\mathbb{N}]^{\infty}$, of cardinality \mathfrak{p}, which is not γ

Corollary 4

$\omega_{1}<\mathfrak{p} \Longrightarrow$ there exists an uncountable γ-set
Is there a γ-set of cardinality $\geqslant \mathfrak{p}$?

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$
Let $f, g \in[\mathbb{N}]^{\infty}$. Then $f \leqslant^{*} g$, if $f(n) \leqslant g(n)$ for almost all n.

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$
Let $f, g \in[\mathbb{N}]^{\infty}$. Then $f \leqslant^{*} g$, if $f(n) \leqslant g(n)$ for almost all n.
$[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in[\mathbb{N}]^{\infty}$ such that $a \leqslant^{*} b$ for all $a \in A$.

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$
Let $f, g \in[\mathbb{N}]^{\infty}$. Then $f \leqslant^{*} g$, if $f(n) \leqslant g(n)$ for almost all n.
$[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in[\mathbb{N}]^{\infty}$ such that $a \leqslant^{*} b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$
Let $f, g \in[\mathbb{N}]^{\infty}$. Then $f \leqslant^{*} g$, if $f(n) \leqslant g(n)$ for almost all n.
$[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in[\mathbb{N}]^{\infty}$ such that $a \leqslant^{*} b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection
\mathfrak{b} - the minimal cardinality of an unbounded set

Tower in $[\mathbb{N}]^{\infty}$

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\kappa\right\}$ is a tower, if $x_{\beta} \subseteq^{*} x_{\alpha}$ for $\alpha<\beta$
Let $f, g \in[\mathbb{N}]^{\infty}$. Then $f \leqslant^{*} g$, if $f(n) \leqslant g(n)$ for almost all n.
$[\mathbb{N}]^{\infty} \supseteq A$ is bounded, if there exists $b \in[\mathbb{N}]^{\infty}$ such that $a \leqslant^{*} b$ for all $a \in A$.

A set A is unbounded, if it is not bounded.
\mathfrak{p} - the minimal cardinality of a centered family in $[\mathbb{N}]^{\infty}$ with no pseudointersection
\mathfrak{b} - the minimal cardinality of an unbounded set

$$
\omega<\mathfrak{p} \leqslant \mathfrak{b} \leqslant \mathfrak{c}
$$

Unbounded tower

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\mathfrak{b}\right\}$ is an unbounded tower, if T is a tower and T is unbounded

Unbounded tower

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\mathfrak{b}\right\}$ is an unbounded tower, if T is a tower and T is unbounded
$T=$ an unbounded tower

Unbounded tower

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\mathfrak{b}\right\}$ is an unbounded tower, if T is a tower and T is unbounded
$T=$ an unbounded tower
Lemma 5
T exists $\Longleftrightarrow \mathfrak{p}=\mathfrak{b}$

Unbounded tower

$[\mathbb{N}]^{\infty} \supseteq T=\left\{x_{\alpha}: \alpha<\mathfrak{b}\right\}$ is an unbounded tower, if T is a tower and T is unbounded
$T=$ an unbounded tower
Lemma 5
T exists $\Longleftrightarrow \mathfrak{p}=\mathfrak{b}$

Theorem 6 (Tsaban)
$T \cup$ Fin is a γ-set

Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)
Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.

Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)
Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.

Theorem 8 (Szewczak, MW) $(T \cup$ Fin $) \sqcup(\widetilde{T} \cup$ Fin $)$ is γ

Products of γ-sets

Theorem 7 (Miller, Tsaban, Zdomskyy)
Assuming CH, there are γ-sets X and Y such that $X \times Y$ is not Menger space.

Theorem 8 (Szewczak, MW) $(T \cup$ Fin $) \sqcup(\widetilde{T} \cup$ Fin $)$ is γ

Corollary 9 (Szewczak, MW)
$(T \cup$ Fin $) \times(\widetilde{T} \cup$ Fin $)$ is γ

Products of γ-sets

$\kappa:=\min \{|X|: X$ is not productively $\gamma\}$

Products of γ-sets

$\kappa:=\min \{|X|: X$ is not productively $\gamma\}$
Theorem 10 (Szewczak, MW)
Let $\kappa=\mathfrak{b}$ and $Y \subseteq \mathrm{P}(\mathbb{N})$ be a γ-set. Then $(T \cup \mathrm{Fin}) \sqcup Y$ is γ.

Products of γ-sets

$\kappa:=\min \{|X|: X$ is not productively $\gamma\}$
Theorem 10 (Szewczak, MW)
Let $\kappa=\mathfrak{b}$ and $Y \subseteq \mathrm{P}(\mathbb{N})$ be a γ-set. Then $(T \cup \mathrm{Fin}) \sqcup Y$ is γ.
Corollary 11 (Szewczak, MW)
Let $\kappa=\mathfrak{b}$. Then $T \cup$ Fin is productively γ.

Products of γ-sets

$\kappa:=\min \{|X|: X$ is not productively $\gamma\}$
Theorem 10 (Szewczak, MW)
Let $\kappa=\mathfrak{b}$ and $Y \subseteq \mathrm{P}(\mathbb{N})$ be a γ-set. Then $(T \cup \mathrm{Fin}) \sqcup Y$ is γ.
Corollary 11 (Szewczak, MW)
Let $\kappa=\mathfrak{b}$. Then $T \cup$ Fin is productively γ.

Countably γ

countably γ-set $=$ every countable ω-cover has a γ-subcover

Countably γ

countably γ-set $=$ every countable ω-cover has a γ-subcover
Theorem 12 (Szewczak, MW)
Let $\lambda<\mathfrak{b}$. Then $\bigsqcup_{\beta<\lambda}\left(T_{\beta} \cup\right.$ Fin $)$ is countably γ.

Countably γ

countably γ-set $=$ every countable ω-cover has a γ-subcover
Theorem 12 (Szewczak, MW)
Let $\lambda<\mathfrak{b}$. Then $\bigsqcup_{\beta<\lambda}\left(T_{\beta} \cup\right.$ Fin $)$ is countably γ.

Corollary 13 (Szewczak, MW)
Let $\omega_{1}<\mathfrak{b}$. Then $X=\bigsqcup_{\beta<\omega_{1}}\left(T_{\beta} \cup\right.$ Fin $)$ is countably γ, X is not $\gamma,|X|=\mathfrak{p}$ and X is a metrizable space.

Countably γ

countably γ-set $=$ every countable ω-cover has a γ-subcover
Theorem 12 (Szewczak, MW)
Let $\lambda<\mathfrak{b}$. Then $\bigsqcup_{\beta<\lambda}\left(T_{\beta} \cup\right.$ Fin $)$ is countably γ.

Corollary 13 (Szewczak, MW)
Let $\omega_{1}<\mathfrak{b}$. Then $X=\bigsqcup_{\beta<\omega_{1}}\left(T_{\beta} \cup\right.$ Fin $)$ is countably γ, X is not $\gamma,|X|=\mathfrak{p}$ and X is a metrizable space.

Corollary 14 (Szewczak, MW)
Let $\lambda<\mathfrak{b}$. Then $\bigcup_{\beta<\lambda}\left(T_{\beta} \cup\right.$ Fin $)$ is γ.

